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ABSTRACT: Monte Carlo simulations are used to study the
knotting probability of circular DNA confined in a slit. We
systematically vary the slit height, the width, and the contour
length of the DNA molecule. We find that the trend in
knotting probability with respect to slit height can be
monotonic or nonmonotonic, depending on the width and
contour length. The nonmonotonic trend is caused by two
competing factors: the increase of the effective persistence
length and the increase of segment density by slit confinement.
These factors are antagonistic, in the sense that the increase in
effective persistence length disfavors knot formation, whereas
the increase in segment density favors the knotting probability.
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Our simulation results bring to light the importance of both chain length and width for slit-confined circular DNA and can be
used to guide future experiments which aim to produce populations of knotted DNA through cyclization or catalyzed double-

strand passage reactions in confinement.

NA behavior in nanoconfinement is a burgeoning
research area. The motivation has been multifold. First,
nanodevices with well-defined canonical geometries (e.g., tubes,
channels, and slits) provide platforms for fundamental studies
of the static and dynamic properties of polymers in confine-
ment.'™! Second, the understanding of DNA behavior in
nanodevices can be applied to genome analysis.">""* Third, in
vivo DNA routinely experiences a confined environment due to
quasi-stationary membranes and filaments in cells. Confine-
ment in turn can affect the biological function of DNA. For
example, DNA confined in a viral capsid experiences a high
pressure which can eject the DNA into bacteria during the
infection process.'®
For a linear DNA chain, the effect of confinement on the
conformation has extensively been studied using theories,'*™"*
simulations,"” ™' and experiments."™ For a circular DNA
molecule, the effects of confinement are more complicated, due
to the interplay of geometrical confinement and topological
constraint (see ref 22 for a review). Such interplay may
contribute to the spatial organization of DNA in cells.*”>
Circular DNA may also be knotted,**™° which affects its statics
and dynamics. The formation of knots results from either
cyclization® or double-strand passage reactions catalyzed by
type II topoisomerase.”® The knotting probability, which is
defined as the fraction of knotted conformations from all
circular conformations, depends on the contour length and the
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effective diameter of the DNA molecule.’**° In vivo, the
knotting probability is actively controlled by type II top-
oisomerases, because the knotting probability was found to be
as much as 80 times lower than at thermodynamic
equilibrium.>* The knotting probability was also observed to
be dramatically enhanced by confinement inside the capsid of
viruses.>> A virus capsid produces a nearly isotropic, spherical
confinement. Computer simulations show that the knotting
probability in spherical confinement monotonically increases
with increasing confinement.*®

In contrast to spherical confinement, the knotting probability
in slit confinement (a form of uniaxial confinement) can be
nonmonotonic with increasing degree of confinement. Recent
computer simulations by Micheletti and Orlandini** reveal that
the knotting probability is initially enhanced several fold by
weak and moderate slit confinement and then decreases toward
zero in strong slit confinement. In their simulations, the width
of the DNA chain is held constant at 2.5 nm and the DNA
length varied up to 4.8 um. This chain width corresponds to
DNA at high ionic strength. In experiments or in vivo, the
effective chain width may be much larger than 2.5 nm due to
decreased screening in the electrostatic double layer.
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In our work, we perform Monte Carlo simulations of circular
DNA in slits and vary both the chain width and the contour
length. The protocol allows double-strand passage (crossing of
duplex), which simulates some aspects of type II topoisomerase
activity as well as the cyclization of linear chains. The knotting
probability calculated from simulations corresponds to the
fraction of knotted conformations in circular DNA which are
obtained from cyclization experiments.***° We find that the
effect of slit confinement on the knotting probability may be
nonmonotonic or monotonic, depending on chain width and
contour length. We show that this trend arises from a
competition between the effective persistence length and
segment density in slit confinement.

The simulation method is almost identical to the one we
recently used for linear DNA in a slit,”® except for some
modifications for the modeling of circular DNA. Here, we
briefly describe the simulation method. DNA is modeled as a
ring chain of N beads connected by N inextensible bonds of
length Iz, corresponding to a contour length L = Nl;. There are
three types of interactions in the simulations: the hard-core
repulsion between DNA beads, the hard-core repulsion
between DNA beads and slit walls, and the bending energy
between adjacent bonds. The hard-core diameter of the bead is
set to equal the bond length ;. The bead diameter is equivalent
to the chain width w, such that the number of beads equals L/
w. The values w = 5, 10, and 20 nm correspond to ionic
strengths of approximately 160, 28, and 6 mM, 1res.pective1y.8
The contour length is varied from 2 ym (~6 kbp) to 16 um
(~47 kbp). For comparison, P4 phage DNA (~10 kbp) is often
used to study the knotting in experiments®® and capsids.””**
The bending rigidity is set to reproduce a persistence length of
50 nm. We do not consider the twist energy of the circular
DNA, so that our model corresponds to a nicked open-circular
DNA (similar to what was performed in ref 34).

The simulation starts from an unknotted conformation. We
perform one crankshaft move in each Monte Carlo cycle. The
crankshaft move may switch an unknotted conformation to a
knotted conformation, or the converse. We do not prevent such
a move, to obtain the knotting probability, just like the
simulations by Micheletti and Orlandini** The DNA
conformations sampled by this method correspond to DNA
rings obtained by randomly cyclizing linear DNA.>%* The
simulation usually reaches equilibrium in 10° steps. In the
production run, we perform 10 steps and record the
configuration every 10° steps for data analysis. For the
estimation of the error in the calculation of knotting
probability, we divide the 10° configurations into 10 bins,
calculate the average knotting probability in each bin, and then
calculate the standard deviation of these 10 values (see the
Supporting Information). The errors calculated in this way are
usually less than the symbol size in the figures, and most of our
figures do not show the error bars. We check whether or not
the circular DNA is knotted by the Alexander polynomial A(t),
following Vologodskii et al.>> In the current study, we do not
classify the knot type.

First, we present the simulation results in bulk. Figure 1
shows the knotting probability ky as a function of the contour
length. As the chain becomes longer, the knotting probability
becomes laréger. Similar results have been reported in
experiments”® and computer simulations.*® In addition, as the
chain width w becomes larger, the knotting probability
decreases. The dependence of kyy on w has been used to
infer the effective diameter of DNA from the knotting
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Figure 1. Knotting probability in bulk, kyy, as a function of the DNA
contour length. Different colors (or symbols) correspond to different
chain widths. w = 0 corresponds to an ideal chain.

probability in the condition of different ionic strengths.*® The
chain width w = 0 corresponds to an ideal chain in which
repulsion between DNA beads is turned off in the simulation.

Next, we proceed to the simulation results of a circular DNA
in a slit. Figure 2 shows the knotting probability kg, as a

H (nm)

Figure 2. Normalized knotting probability as a function of the slit
height. Different colors (or symbols) correspond to different contour
length. The chain width is 10 nm for all curves.

function of the slit height. Different curves correspond to
simulations using different contour lengths, but with the same
chain width w = 10 nm. The knotting probability is normalized
to the value in bulk. When the contour length is shorter than
about 8 ym, the slit confinement has a nonmonotonic effect on
the knotting probability. A similar trend has been observed in
the simulations by Micheletti and Orlandini.***® However,
when the contour length is 16 pm, increased confinement
always reduces the probability for knot formation. As the chain
length increases, the peak value of kg;/ky becomes smaller,
and the peak position shifts to larger slit heights.

We now move on to study the effect of chain width. Figure 3
shows simulation results obtained by using different chain
widths, but with a fixed contour length of 8 ym. When the
chain width is less than or equal to 10 nm, the knotting
probability is nonmonotonic. However, when the chain width is
20 nm, the trend becomes monotonic. As the chain width
increases, the peak value of kg;,/ky, becomes smaller, and the
peak position shifts to larger slit heights. In the case of an ideal
chain (no excluded volume), kg, increases from ky in weak
and moderate confinement and slightly decreases from the peak
value in strong confinement. An ideal chain confined to a plane
can cross itself, and thus the knotting probability does not
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Figure 3. Normalized knotting probability as a function of the slit
height. Different colors (or symbols) correspond to different chain
widths. The contour length is 8 ym for all curves.

approach zero when H approaches zero, as shown by the
dashed line in Figure 3. Note that the ideal chain is not the
limiting case for a real chain with a vanishingly small width,
because a real chain can never cross itself when confined to a
plane, no matter how small the chain width becomes.

The peak positions in Figures 2 and 3 are related to the
confinement strength, that is, the ratio of the slit height to the
radius of gyration of a chain in bulk. For a thicker or longer
chain, the radius of gyration in bulk is larger, and so the peak
shifts to a larger slit height. In the Supporting Information, we
normalized the slit height to the radius of gyration of DNA in
bulk and replot Figures 2 and 3. The peak position in the
different curves occurs approximately when H is on the order of
the bulk radius of gyration. In addition, we also show the peak
value and peak position as a function of the contour length and
width in the Supporting Information.

Combining the information in Figures 2 and 3, we can create
a plot (Figure 4) which generalizes the effect of slit
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Figure 4. Diagram of the effect of slit confinement on the knotting
probability as a function of the width and the contour length. The
curve demarcates the boundary between the monotonic and the
nonmonotonic kg versus H regions.

confinement on the knotting probability as a function of
chain width and contour length. The curve demarcates the
boundary of the nonmonotonic and monotonic regions. Above
the curve, that is, for long and thick chains, the slit confinement
monotonically decreases the knotting probability. Below the
curve, the knotting probability exhibits a nonmonotonic trend
when varying the slit height. Practically, it is difficult to obtain
the boundary for a very short or very long chain. For a very
short and thick chain (the left-hand end of the curve in Figure
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4), the knotting probability is too small (less than 1%) to
obtain the precise value. For a very long chain, the
computational time becomes impractical. It is expected that
for an infinitely long chain the critical chain width approaches
zero. This is because the knotting probability of an infinite long
chain in bulk is 1,>” and the knotting probability in a slit cannot
exceed this value. With decreasing L, the critical chain width
increases more rapidly. However, the critical chain width
cannot increase to infinity, because it must be less than the
contour length. The nonmonotonic trend will occur for short
and thin chains, such as those used in the simulations by
Micheletti and Orlandini.**

To determine the mechanism for the nonmonotonic trend,
we have analyzed some other quantities of the DNA
conformation in the simulations. First, we consider the average
segment density Cseg as a function of the slit height. The
segment density is inversely proportional to the chain volume.
Here, the volume occupied by the chain is defined as the
product of the three eigenvalues of the radius of gyration
tensor, instead of the radius of gyration cubed Rg3, because
DNA conformations in slits are significantly anisotropic. As
shown in Figure Sa, the segment density monotonically
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Figure S. (a) Normalized DNA segment density as a function of the
slit height. (b) Number of crossings as a function of the slit height.
Nio5s is the average number of crossings for the chain projection on a
slit wall, which is normalized to the bulk value. Different symbols
(colors) correspond to the simulations using different chain widths

and the same contour length of 8 ym.

increases as the slit confinement becomes stronger. The
increase in segment density favors knot formation. Note that
if we use Rg3 to infer the segment density, we observe
nonmonotonic change of Rg3 as a function of H, which agrees
with the results by Micheletti and Orlandini.>* However, Rg3
does not accurately reflect the chain volume.

Next, we calculate the average number of self-crossing events
N_.ss when we project the DNA chain on the slit wall, as shown
in Figure Sb. Note that N, here is not the number of
crossings used for the knot classification, because most of the
self-crossings can be removed by three types of Reidemeister
moves™® in knot simplification. N, is normalized to the bulk
value N**%  In bulk, we choose a random direction to project
DNA before counting the number of crossings. The values of

NEuk are 77.6, 66.6, 59.0, 63.6, and 39.5, when w = 2.5, 5, 7.5,
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10, and 20 nm, respectively. N, monotonically decreases as
the slit height decreases. Since N, is positively correlated
with the knotting probability, the decrease of N by slit
confinement disfavors knot formation.

The nonmonotonic behavior of the knotting probability in
slit confinement appears to be the result of the competing
effects of N, and C,,. However, as shown in Figure 4, the slit
confinement monotonically decreases the knotting probability
for a sufficiently thick chain or a sufficiently long chain. The
monotonic trend is most likely because the disfavoring factor of
knotting formation (decrease of N,) overwhelms the
favoring factor (increase of Cseg) for the whole range of
decreasing H (increase in confinement). As shown in Figure
Sa,b, for a thicker chain, the favoring factor becomes weaker,
and the disfavoring factor becomes stronger. This may be the
reason for the monotonic trend when the chain width is
sufficiently large. In addition, the competition of the (dis)-
favoring factors should also depend on the value of k. For a
long chain, ky is large, and then the knotting probability is
relatively difficult to increase by slit confinement. As mentioned
above, the limiting case is that when the chain is infinitely long
with a maximal knotting probability of unity. Accordingly, for a
sufficiently long chain the knotting probability decreases
monotonically with increasing slit confinement.

The increase of Cq, by slit confinement is relatively easy to
understand. The decrease of N, by slit confinement is due to
the increase of the effective persistence length by slit
confinement. For an ideal chain, our previous simulations
show that the effective persistence length monotonically
increases when the slit height decreases.”® The effective
persistence length is extracted from the exponential decay of
the correlation of segment orientation. For a real chain, the
effective persistence length is also observed to be increased
greatly by slit confinement in strong confinement regime.* In
addition, the excluded volume interaction prohibits the self-
crossing of a real chain when the slit height is less than the
chain width. As a result, for a real chain N, approaches zero
when H approaches zero.

Our simulations demonstrate the interplay of spatial
confinement and topological states. Slit confinement increases
the segment density, which favors knot formation. On the other
hand, with decreasing slit height, the effective persistence length
of DNA increases from L, in bulk to 2L, in a plane. This
increase in orientation correlation length disfavors knot
formation. The excluded volume interaction is also of
importance, because it greatly decreases the knotting
probability in strong confinement. Overall, the results reveal
that all four lengths of the system, that is, persistence length,
chain width, contour length, and slit height, play essential roles
in determining the knotting probability. The competition of
different interactions gives rise to the nonmonotonic or
monotonic trend in the knotting probability. Different modes
of confinements (e.g, sphere, tube, slit) will in turn have
different effects on DNA behavior, because the competitions of
different interactions will vary. For instance, previous
experimental results reveal that the tube and slit confinements
have different effects on DNA compaction induced by
depletion.”"® Spherical confinement monotonically increases
the knotting probability,>* which is different from the effect of
slit confinement. Thus, it would be interesting to examine the
effect of tube confinement on the knotting probability. Analysis
of the populations of special knot types in confinement is also
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an interesting topic, which has been explored by Micheletti and
Orlandini** but only for a fixed chain width of 2.5 nm.

Note that in our simulation the Monte Carlo moves allow for
a DNA segment to pass through another one. As mentioned
previously, the knotting probability calculated here thus
corresponds to the fraction of nontrivial knots in the DNA
rings cyclized from linear chains.”**° The situation may also be
realized in the presence of type II topoisomerases. However,
type II topoisomerases change the distribution of different
topological states by a bias in double-strand passage reactions
through the dissipation of energy.>’ In other words, in the
presence of type Il topoisomerases the distribution in
topoisomers differs from the one obtained from random
passage reactions. Furthermore, in the absence of cutting
enzymes, the topology of circular DNA is of course
preserved.'"*" In this case, slit confinement has no effect on
the topological state of DNA.

The simulation results presented here can help to predict
experimental conditions to produce knotted DNA through
cyclization in confinement. The experiment in a slit rather than
in bulk should be more efficient to obtain knotted circular
DNA, provided the ionic strength is sufficiently high. For
example, in the case of A-DNA with a contour length of 16 um,
the ionic strength should be larger than 30 mM (ie, the
effective diameter® of DNA is less than about 9 nm) to increase
the knotting probability by slit confinement.
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Self-correlation of DNA topology in simulations; normalized
knotting probability as a function of the normalized slit height;
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